Chapter 9 Chemical Quantities

Section 1. Information in chemical equations

Chemical equations can be evaluated by several terms.
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Describes:

Review:
Aqueous solutions of silver nitrate and copper (II) sulfate react to produce what?
*Make sure all \qquad are balanced before doing \qquad *

Section 2: Mole to Mole relationships

This tells us __ moles of water \qquad to \qquad moles of \qquad and __ mole of oxygen.

What if we had \qquad mole of \qquad ?
__ mole of \qquad is produced
__ mole of \qquad is produced
\qquad can be written from balanced equations.

2 moles $\mathrm{H}_{2} \underline{\mathrm{O}}$	2 moles $\mathrm{H}_{2} \underline{\mathrm{O}}$	2 moles H_{2}
2 moles H_{2}	1 mole O_{2}	1 mole O_{2}

Use these as \qquad to do calculations between
\qquad .

If you have \qquad moles of \qquad , how many moles of \qquad will it produce?

Section 3 Mass Calculations

How much iodine would be needed to completely react with 35.0 g of aluminum?

You should know:
$1 \mathrm{~mol} \mathrm{Al}=\ldots \quad \mathrm{g} \mathrm{Al}$
$1 \mathrm{~mol} \mathrm{I} \mathrm{=} \quad$ g I
_ $\mathrm{mol} \mathrm{Al}=\ldots \mathrm{mol} \mathrm{I}_{2}$
We can change 35.0 g of $\mathrm{Al} \rightarrow$ moles $\mathrm{Al} \rightarrow$ moles $\mathrm{I}_{2} \rightarrow$ grams I_{2}
Self Check 9.3 pg. 258

The \qquad of using \qquad equations to \qquad problems is called \qquad .

How many water molecules were formed in self check 9.3 ?

When 9.2 moles of ammonia are decomposed at STP, what volume of hydrogen is produced?

What is the mass of the hydrogen produced?

Section 4 Concepts of Limiting Reagent

8 slices of bread, 1 full jar of peanut butter and 1 full jar of jam. Which will you run out of first when you make pb and j 's?
\qquad
Which will you have left over?
\qquad = excess reagents

The \qquad in the balanced equation indicate the \qquad required to completely consume all the \qquad with no reactants remaining \qquad . This ratio is called a \qquad . When a mixture is found to contain these \qquad , it is said to be a stoichiometric \qquad . There would be no limiting
\qquad in this scenario.

Most mixtures of reactants are \qquad stoichiometric so the limiting reagent/reactant needs to be \qquad .

This is done when the quantities of \qquad are given in the problem.

Limiting reactant/reagent determines the \qquad produced and is the reactant that runs out \qquad .

Section 5 Calculations Involving a Limiting Reactant

Step $1=$ using stoichiometry, convert the \qquad of the \qquad reactant to the \qquad of the \qquad in question.
Step 2 = using stoichiometry, convert the \qquad of the second
\qquad to the mass of the \qquad .
Step 3 = the \qquad that \qquad the \qquad amount of
\qquad is the limiting reagent.

Example:
2.50×10^{4} grams of nitrogen and 5.00×10^{3} grams of hydrogen react. First determine the limiting reagent, then identify the mass of ammonia produced.
Step 1 -

Step 2 -

Step 3 -

The amount of product produced is \qquad of NH_{3}. This is called the
\qquad —.

Ex. 9.8 pg. 271
$2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{CuO}(\mathrm{s}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{Cu}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

The limiting reagent is \qquad , the amount of \qquad produced is
\qquad —.

Section 6 Percent Yield

\qquad and \qquad are concerned with
of production. Oftentimes \qquad is used to determine
\qquad .

Theoretical yield is the \qquad amount of product formed from a \qquad equation and given
\qquad of \qquad . This is a \qquad quantity. Actual yield is the \qquad of product \qquad when the process is \qquad carried out.

Percent yield is the \qquad of the \qquad yields based on \qquad .
Ex. During an experiment you obtain 14.6 grams of water and the theoretical yield is 15.4 grams. What is the percent yield?

This next example combines limiting reagent and percent yield.
Using the following reaction, calculate the mass of xenon tetrafluoride that is formed from 130. grams of xenon reacts with 100. grams of F_{2}. Also determine the percent yield if only 145 g of XeF_{4} is actually isolated.

$$
\mathrm{Xe}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{XeF}_{4}(\mathrm{~s})
$$

Limiting reagent is \qquad , the theoretical yield is

Percent yield is

