Chapter 9 Chemical Quantities

Section 1. Chen C ₃ H ₈ Desc	Information nical equation $(g) + 5 O_2(g)$ ribes:	the in chemical is can be eval $) \rightarrow 3CO_2(g)$	equations luated by several terms. + 4 H ₂ O(g)	
Revie Aqueous so what?	ew: lutions of sil	ver nitrate and	d copper (II) sulfate react to	produce
*Make sure	all	are bala	nced before doing	*
Section 2:	Mole to Mol	e relationshi	ps	
This tells us mole of What m m	s moles of oxygen. t if we had ole of ole of	water mole of is produ is produc	to moles of ? ced ed	and
	can b	e written fror	n balanced equations.	
<u>2 mo</u>	les H_2O	$2 \text{ moles } H_2$	\underline{D} <u>2 moles H₂</u>	
2 mo	les H_2	1 mole O_2	1 mole O_2	
Use these a	s		to do calculations between	
If you have produce?	moles	s of	, how many moles of	will it

Section 3 Mass Calculations

How much iodine would be needed to completely react with 35.0 g of aluminum?

You should know: 1 mol Al = _____ g Al 1 mol I = _____ g I ___ mol Al = __ mol I₂ We can change 35.0 g of Al \rightarrow moles Al \rightarrow moles I₂ \rightarrow grams I₂

Self Check 9.3 pg. 258

The _____ of using _____ equations to _____ problems is called _____.

How many water molecules were formed in self check 9.3?

When 9.2 moles of ammonia are decomposed at STP, what volume of hydrogen is produced?

What is the mass of the hydrogen produced?

Section 4 Concepts of Limiting Reagent

8 slices of bread, 1 full jar of peanut butter and 1 full jar of jam. Which will you run out of first when you make pb and j's?

_____= limiting reagent Which will you have left over? _____= excess reagents

The ______in the balanced equation indicate the ______ _____required to completely consume all the ______ with no reactants remaining ______. This ratio is called a _______ _____. When a mixture is found to contain these ______, it is said to be a *stoichiometric* ______. There would be no limiting _______ in this scenario.

Most mixtures of reactants are ______ stoichiometric so the limiting reagent/reactant needs to be ______.

This is done when the quantities of ______ are given in the problem.

Section 5 Calculations Involving a Limiting Reactant

Step 1= using stoichiometry, convert the _____ of the _____ reactant to the _____ of the _____ in question. Step 2 = using stoichiometry, convert the _____ of the second ______ to the mass of the ______. Step 3 = the _____ that _____ the _____ amount of ______ is the limiting reagent.

Example:

 2.50×10^4 grams of nitrogen and 5.00×10^3 grams of hydrogen react. First determine the limiting reagent, then identify the mass of ammonia produced. Step 1 –

Step 2 –

Step 3 –

The amount of product produced is ______ of NH₃. This is called the

Ex. 9.8 pg. 271

_____•

 $2NH_3(g) + 3CuO(s) \rightarrow N_2(g) + 3Cu(s) + 3H_2O(g)$

The limiting reagent is _____, the amount of ____ produced is

Section 6 Percent Yield

_____·

_____ and _____ are concerned with ______ of production. Oftentimes ______ is used to determine

 <u>Theoretical yield</u> is the ______ amount of product

 _______ formed from a ______ equation and given

 _______ of ______. This is a ______ quantity.

 <u>Actual yield</u> is the ______ of product ______ when the process

 is ______ carried out.

<u>*Percent yield*</u> is the ______ of the _____ yields based on ______. Ex. During an experiment you obtain 14.6 grams of water and the theoretical yield is 15.4 grams. What is the percent yield?

This next example combines limiting reagent and percent yield.

Using the following reaction, calculate the mass of xenon tetrafluoride that is formed from 130. grams of xenon reacts with 100. grams of F_2 . Also determine the percent yield if only 145 g of XeF₄ is actually isolated.

 $Xe(g) + 2F_2(g) \rightarrow XeF_4(s)$

Limiting reagent is _____, the theoretical yield is

Percent yield is