CHAPTER 2 MEASUREMENTS AND CALCULATIONS

Measurements can be qualitative or quantitative. Qualitative Quantitative

Both measurements are types of _____.

Sec. 1 Scientific notation

-It expresses a number as a

The sun is 93,000,000 miles from the earth. easier to write _____ miles (make sure the digit in front of the decimal is between)

0.00023 =

(moving the decimal to the left is +, moving to the right is -) 238,000 = 0.0043 =

Sec. 2 Units

_____ must accompany a quantitative measurement. The number:

Boil the pasta for 10.

English system and the Metric system _________ is preferred for science.

A standardized system was developed in 1960 and is based on the metric system. _____

Table 2.1 pg. 18. mass = kg, length = m, temp.= K

Prefixes are used to:

Table 2.2 pg. 19 Know these: kilo, deci, centi, milli

Ex. 1 km = 100 cg =

Sec. 3 Length, volume, and mass

Length is commonly measured in _____. (not always convenient, cm, mm are smaller)

Volume is:

A cube 1 m in length on each side has a volume of _____. This cube can be divided into _____ equal cubes. These cubes have a volume of

 $1 \text{ dm}^3 =$ ______. Liter is the common unit for ______. Sometimes changed to:

The _____ can be divided into:

Mass is:

This is measured in _____. This unit is too large for laboratory measurements:

 $1 \text{ kg} = \underline{\qquad}$ (________ is used to measure mass) Table 2.5 and 2.6 pg. 21-22

Sec. 4 Uncertainty in measurement

Each measurement has an ______. (last) Pg. 24 The length of the pin is ______ The 2 and 8 are ______, and the 5 is the ______, or _____ digit. *every measurement has an uncertain digit*

The number of digits in the measurement will depend:

_____ digits in a measurement (certain and uncertain) are called

Sec. 5 Significant Figures

AKA = sig figs Significant figures are important in _____ as well as in _____. We will look at rules concerning sig figs in this section.

Which digit(s) is(are) called sig figs?

Rules:

1. All ______ are significant figures Ex.

2. Zeros

A.	Zeros that	_ all nonzero digits are				
	called sig fi	igs. (zeros)				
	Ex.					
	These zeros are	, they tell				
	the magnitude of the measurement but are					
	not actually	numbers.				
	This number has					
B.	, zero	os between nonzero				
numbers significant figures.						
	Ex.	0				
	This zero is	and significant,				
	thus	-				
C.	,	zeros at the right of the				
number counts as sig figs if there						
is a in the number.						
Ex.						
These zeros are and there is a						
dec	imal in the number t	thus they are				
significant figures and are in this number. Ex.						
	sig figs					
	Ex.					
	sig fig					

3. _____ numbers have an ______
number of sig figs.
Obtained by ______.
Ex.
Obtained by ______.
Ex.
These numbers ______ limit the significance
in a ______.

Do these:

- 1. 0.0108 g vitamin C
- 2. 0.0050060 g of hair
- 3. 5.030×10^3 ft
- 4. 110 riders in a rodeo

Rounding:

Same as you learned in previous math classes, using the _____ as your guide up or down.

Ex. 4.348 Round to two significant figures. 4.3

Ex. 2.2937 x 10^2 Round to three sig figs.

 2.29×10^2

Determining the number of sig figs in calculations. For rounding when doing a series of calculations:

Rules:

 Multiplication and Division

 The answer has the ______ of sig figs as the number in the ______ with the ______ sig figs. (An ______ can only be as ______ as the ______ precise measurement.)

 count significant figures

 Ex. 4.56 x 1.4 =

8.315 ÷ 298 =

Addition and Subtraction

The _____ measurement is the one with the fewest _____. (Look at the decimal places to round.) *place location*

Ex. 12.11	(<u>digits after the dec.</u>)
18.0	(digit after the dec.)
+ 1.013	(digits after the dec.)

Round to the _____ with the _____ digits _____ the decimal. That would be the zero in 18.0. _____ is the correct rounded answer.

<u>Calculations involving multiple functions</u> When doing calculations involving ______ addition/subtraction and multiplication/division ______ must occur _____ each _____ to give the ______ answer. Ex. 2.67 + (3.2 x 6.94) = (Do ______ of operations and round at ______ step using the correct ______ rule.)

1) 3.2 x 6.94 = 2) 2.67 + 22 =

Sec. 6 Problem Solving and Dimensional Analysis

Converting from one ______ to _____ is done a lot in chemistry.

2 dozen doughnuts = (1 dozen =___)

To change from 1 unit to another you need a_____.

Conversion factor is the _____ of the _____ parts of the statement that _____ the two _____. (Equality)

2.85 cm = ? in (2.54 cm = 1 in)

 (When doing _______ analysis, conversion factors ______

 affect sig. figs. Look at the ______ in your ______ to

 determine sig. figs. in the ______.)

Conversion factors can be ______ depending on which _____ you want your _____ to have. Ex. <u>1 in</u> or 2.54 cm

Ex. 7.00 in = ? cm

_____ look at your _____ to make sure it makes _____. Changing units using conversion factors is called:

Ex. 2.7 pg. 33

- 1. Make sure you include ______ throughout the ______.
- 2. Make sure _____ has _____ units.
- 3. Check that answer has ______ # _____.
- 4. See if answer makes _____.

Sec. 7 Temperature Conversions

Read through the section.

	Fahrenheit	Celsius	Kelvin
(water)			
boils			
freezes			
	t based on freezin	01	
Celsius ba	sed on freezing p	oint of	

Kelvin based on _____ zero, point where all motion _____

Know these:

$$K =$$

 $^{\circ}C =$
Ex. 100 K = ? $^{\circ}C$
 $^{\circ}C =$
 $^{\circ}C =$

Sec. 8 Density

This is the amount of ______ in a certain _____. Mass per unit volume. Can be used to ______ a substance. Density = _____s = _____volume

Ex. 2.13 Student finds 23.50 mL of a liquid weighs 35.062 grams. What is the density?

Because 1 mL = _____, the answer could also be 1.492

Do example 2.14 pg. 43 Is the medallion platinum or silver?