CHAPTER 2 MEASUREMENTS AND CALCULATIONS

Measurements can be qualitative or quantitative.
Qualitative
Quantitative
Both measurements are types of \qquad .

Sec. 1 Scientific notation

-It expresses a number as a

The sun is $93,000,000$ miles from the earth. easier to write \qquad miles (make sure the digit in front of the decimal is between
\qquad
$0.00023=$
(moving the decimal to the left is + , moving to the right is -)
$238,000=$
$0.0043=$
Sec. 2 Units
\qquad must accompany a quantitative measurement. The number:

Boil the pasta for 10 .
English system and the Metric system
\qquad is preferred for science.

A standardized system was developed in 1960 and is based on the metric system. \qquad
Table 2.1 pg . 18. mass $=\mathrm{kg}$, length $=\mathrm{m}$, temp. $=\mathrm{K}$

Prefixes are used to:
Table 2.2 pg. 19 Know these:
kilo, deci, centi, milli

> Ex. $1 \mathrm{~km}=$ $100 \mathrm{cg}=$

Sec. 3 Length, volume, and mass

Length is commonly measured in \qquad . (not always
convenient, cm, mm are smaller)
Volume is:
A cube 1 m in length on each side has a volume of \qquad . This cube can be divided into \qquad equal cubes. These cubes have a volume of
\qquad .

$$
1 \mathrm{dm}^{3}=
$$

Liter is the common unit for \qquad . Sometimes changed to:

The \qquad can be divided into:

These cubes have a volume of \qquad .
measures volume)
\qquad

Mass is:
This is measured in \qquad . This unit is too large for laboratory
measurements:

$$
1 \mathrm{~kg}=
$$

\qquad
 is used to measure mass)
Table 2.5 and 2.6 pg . 21-22

Sec. 4 Uncertainty in measurement

Each measurement has an \qquad . (last)
Pg. 24
The length of the pin is \qquad The 2 and 8 are , and the 5 is the \qquad , or \qquad digit.
every measurement has an uncertain digit
The number of digits in the measurement will depend:
، \qquad digits in a measurement (certain and uncertain) are called

Sec. 5 Significant Figures

AKA = sig figs
Significant figures are important in \qquad as well as in
\qquad . We will look at rules concerning sig figs in this section.

Which digit(s) is(are) called sig figs?

Rules:

1. All \qquad are significant figures
Ex.
2. Zeros
A. Zeros that \qquad all nonzero digits are
\qquad called sig figs. \qquad zeros)
Ex.
These zeros are \qquad , they tell the magnitude of the measurement but are not actually \qquad numbers.
This number has \qquad sig figs
B. \qquad , zeros between nonzero numbers \qquad significant figures.
Ex.
This zero is \qquad and \qquad significant, thus \qquad .
C. \qquad , zeros at the right of the number \qquad counts as sig figs if there
is a \qquad in the number.
Ex.
These zeros are \qquad and there is a
decimal in the number thus they are significant figures and __ are in this number. Ex.
\qquad sig figs
Ex.
\qquad sig fig
3. \qquad numbers have an \qquad number of sig figs.

Obtained by \qquad .
Ex.
Obtained by Ex.
These numbers \qquad limit the significance
in a \qquad .

Do these:

1. 0.0108 g vitamin C
2. $\quad 0.0050060 \mathrm{~g}$ of hair
3. $\quad 5.030 \times 10^{3} \mathrm{ft}$
4. 110 riders in a rodeo

Rounding:
Same as you learned in previous math classes, using the \qquad as your guide up or down.

Ex. 4.348 Round to two significant figures.
4.3

Ex. 2.2937×10^{2} Round to three sig figs.
2.29×10^{2}
Determining the number of sig figs in calculations.
For rounding when doing a series of calculations:

Rules:

Multiplication and Division
The answer has the \qquad of sig figs as the number in the
\qquad with the \qquad sig figs. (An \qquad can only be as \qquad as the \qquad precise measurement.)
count significant figures
Ex. $4.56 \times 1.4=$

$$
8.315 \div 298=
$$

Addition and Subtraction

The \qquad measurement is the one with the fewest . (Look at the decimal places to round.)

Ex. 12.11 (___digits after the dec.)
18.0
$+\quad 1.013$
\square digit after the dec.)
(__ digits after the dec.)

Round to the \qquad with the \qquad digits \qquad the decimal. That would be the zero in 18.0.
\qquad is the correct rounded answer.

Calculations involving multiple functions
When doing calculations involving \qquad addition/subtraction and multiplication/division \qquad must occur \qquad each \qquad to give the \qquad answer.
Ex. $2.67+(3.2 \times 6.94)=$
(Do \qquad of operations and round at \qquad step using the correct
\qquad rule.)

1) $3.2 \times 6.94=$
2) $2.67+22=$

Sec. 6 Problem Solving and Dimensional Analysis

Converting from one \qquad to \qquad is done a lot in chemistry.

2 dozen doughnuts = (1 dozen = \qquad _)

To change from 1 unit to another you need a \qquad .

Conversion factor is the \qquad of the \qquad parts of the statement that
\qquad the two \qquad . (Equality)
$2.85 \mathrm{~cm}=$? in
($2.54 \mathrm{~cm}=1 \mathrm{in}$)
(When doing \qquad analysis, conversion factors \qquad affect sig. figs. Look at the \qquad in your \qquad to determine sig. figs. in the \qquad .)

Conversion factors can be \qquad depending on which \qquad you want your \qquad to have.

$$
\text { Ex. } \frac{1 \text { in }}{2.54 \mathrm{~cm}} \text { or }
$$

Ex. 7.00 in $=? \mathrm{~cm}$
look at your \qquad to make sure it makes \qquad .
Changing units using conversion factors is called:

Ex. 2.7 pg. 33

1. Make sure you include \qquad throughout the \qquad .
2. Make sure \qquad has \qquad units.
3. Check that answer has \qquad \# \qquad .
4. See if answer makes \qquad .

Sec. 7 Temperature Conversions Read through the section.

Fahrenheit Celsius Kelvin
(water)
boils
freezes
Fahrenheit based on freezing point of \qquad .
Celsius based on freezing point of \qquad .
Kelvin based on \qquad zero, point where all motion \qquad .

Know these:

$$
\begin{array}{r}
\mathrm{K}= \\
{ }^{\circ} \mathrm{C}=
\end{array}
$$

Ex. $100 \mathrm{~K}=?{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& { }^{\circ} \mathrm{C}= \\
& { }^{\circ} \mathrm{C}=
\end{aligned}
$$

Sec. 8 Density

This is the amount of \qquad in a certain \qquad .
Mass per unit volume. Can be used to ___ a substance.

Density $=\underline{\text { mass }}=$ volume

Ex. 2.13 Student finds 23.50 mL of a liquid weighs 35.062 grams. What is the density?

Because $1 \mathrm{~mL}=$ \qquad the answer could also be 1.492

Do example 2.14 pg .43 Is the medallion platinum or silver?

