Chapter 4 Elements, Atoms and Ions

Sec.			1 1 1	D 1		
	Ele	ment	s and symbols.	Read.		
Sec.	3 D	alton	's atomic theor	ry		
	Sci	entist	s determined:			
		-	most	materials are _		
			pure substance			
		-	a certain	always h	as the same	
				_ of elements by _	regardless of	
			where it is fou	nd		
			()		
		-			and in 1808 gave an	
				for the above.	()
	1.				called	
	2.	All	atoms of a	element are	·	
	3.		of one	element	_ from atoms of another.	
	4.	Ato	ms of different	elements	to form	
			•			
	5.	Ato	ms are	in chemical re	actions. Not	
		or _	, re	arranged.		
Aton	n con		om the word:			
Soc	4 Fo	rmu]	las and Compo	unde		
Sec.			ias and Compo il formulas expr		and	
				ompound, using:	and	
	CO			SO ₂		
		_		-		
E _v			r writing formul		r atom and three overcon	
		necul	e mom aciu fair	i comanis one sumu	r atom and three oxygen	
atom	S.					

Sec. 5 The structure of the atom

What does and atom look like?

	in 1890's discovered particles emitted
	ents under certain conditions. (electrons)
	vin(William Thomson) thought the atom was a uniform "pudding" with electrons scattered throughout. (Plum pudding
inoder)	
	, in 1911, discovered the
	4.5 pg. 84
1	at gold foil
	screen detected when hit
	some went:
4.	some
5.	some bounced
Thu	as contain moved be
101	O be concluded
191	9 he concluded are in the nucleus.
Elec	etron =
Pro	tons =
	in 1022 showed that
	in 1932 showed that
	are in the nucleus. (no charge)
Sec	. 6 Introduction to the Modern concept of
	the Atomic Structure
	Today's concept:
	-small dense w/ neutrons and
	-electron move the nucleus
	Ex. If the nucleus is the size of a grape, the electrons would be
aho	ut 1 mile away.
auo	Table 4.4 pg. 85, masses and charges.
*	
of the	determine behavior and are the part he atom involved in the chemical
171 1	IIV GRADI III VAI VAA III RIIV VIIVIIIVAI

Sec. 7 Isotopes			
All h	ave	and	The
number of protons		the number	r of electrons in an
atom.			
Ex. Sodium, Na,	has 11 proto	ons.	
How many electr	_		
•			
are also	found in the	(of atoms.
All aton	ns have p	protons, but so	dium atoms can
have	numbers of _		_•
Dalton's idea that	_ atoms of a	given element	are
has changed. Therefore	e "all atoms o	of the	element contain
the number	of	and elec	trons but can have
different numbers of			
Isotopes are:			
The number of	in the	e nucleus of an	atom is called the
·			
Sodium's atomic	# is 11		
The of the p			
of an atom is called the		•	
	presented by		
$_{Z}^{A}X$	where		
		A =	
		$\mathbf{Z} =$	
You also may see them	represented t	this way.	
22			
Ex. $^{23}_{11}Na$ has a total of	-		• •
How many neutro	ons does this	sodium atom	have? (aka
sodium-23)			
24			
			atom have? How
many neutrons? How n	nany electron	ns?	

Ex. What is the isotope symbol for a magnesium atom with a mass number of 24?
Ex. What is the isotope symbol for a silver atom with 61 neutrons?
Average Atomic Mass Atomic mass (weight) is the of all the of an element.
Must have:
Ex. Determine the atomic mass of chlorine. Chlorine -35 is found 75.77% in nature and chlorine -37 is found 24.23% in nature.
(mass number x % found in nature, as decimal)
This is the mass found on the periodic table. Sec. 8 Intro to the periodic table An important tool in chemistry is the
Each box represents a different
Ex. 1 H 1.008
Elements are arranged according Dmitri Mendeleev first
to Dmitri Mendeleev first organized the elements into a Elements are grouped in and because of similar chemical and physical
Columns are called: Elements found within a column have

similar
Columns are with a digit and
a letter.
Letter A. (Representative elements,
Group A.)
Group 1 =
Group 2 =
Group 7=
Group 8=
The elements in the short columns are called "
(Group B)
Most elements are They have similar physical properties: 1.
2. 3.
3. 4.
Metals are found and to the of the zig-zag line.
(except: it's a nonmetal)
lack the properties of metals. Many nonmetals are
These elements are found in the right-hand of the
periodic table. (right of the zig-zag line)
have mixtures of properties.
(found the zig-zag line, except It is a pure metal.)
Fig. 4.10 pg. 93
Sec. 9 Natural states of elements
Read through the section.
Some are made up of of the same
of atom. These are called (made up of 2 atoms, both the
same.)
Seven of them, you must memorize.

Some atoms of or crysta		_		
(carbon- graphite, dia				·
Sec. 10 Ions		c		
		ce of	and	charge,
they are	_		off have	
				n atom, the atom
carries a charge, or			-	
charge, or				115,
Ciid	ige. These	are carred	•	
Ex. If sodium protons.	loses one e	lectron it no	w has 10 elect	rons and 11
$Na \rightarrow N$	a ⁺ + e ⁻			
If the atom called a	e	lectrons it be	ecomes	and is
Al loses ele	ctrons, thus	s: Al →	(catio	n)
The name of the ion. (s the	name pl	us the
If the atom		lectrons it be	ecomes	and is
Cl gains	electron, th	us: $Cl + e^{-}$	\rightarrow	(anion)
				(anion)
The name of th				nent and)
$O + 2e^- \rightarrow$	(oxide io	n)		
*ions aref	•	hanging the	number of	, only
the number of		hart in	the presence	of some other
(ions do not form on subsection). Usua			the presence (or some other

Ionic charges:			
<u>First</u> :	form positive ions () which means	they
electrons.			
Second:	form negative ions	() which means	they
electrons.			
	ine the fo	or many ions from th	e
-metals in group	 ps	all have a charge	
to their		- 0 -	
	Al, group 3 =		
	Ca, group 2 =		
	metal charges can no	ot be f	from the periodic
table.			1
	have a	equal to their group	number
8.			
	nium, group 6;		
ar	gon, group 8;		
chi	lorine, group 7;		
	can form		
	and fro	m group 5 form	charges.
-	ounds that Contain Ion		
	compounds are com		
	which have become	_	ice of each other.
Propertie	es of ionic compounds ar	e:	
-			
-			
	when	in	
water and	when		
* chemi	cal compounds have a _	charge of	, even
if it is compose			
So in an ionic	compound the	of and	
	at the net charge is		
	um chloride	·	
	l Cl ⁻ , how many Na ⁺ ar	nd Cl- to be neutral?	
ina allu	i Ci, now many ina ai	id Ci to be lieutial?	

(metals are written _____, nonmetals _____)

 Mg^{2+} , Cl^{-} How many Mg^{2+} and Cl^{-} ?

 $Ex. \ Ba^{2+} \ , \ O^{2-}$

Ex. Ca^{2+} , P^{3-}

Flip-flop method: